An Introduction to Electrochemical Impedance Spectroscopy (EIS)

Dr. Robert S Rodgers, Ph.D.
Research Solutions and Resources LLC
PO Box 7561 Princeton, NJ 08543

Delivered at June 18, 2009 Meeting of ACS Princeton Local Section
Outline

• A Little about Electrochemistry
 • without scaring you!
• A Little about EIS
 • without scaring you more!
 • EIS Data Plots
• Some Applications of EIS
• Equivalent Circuit Modeling
• EIS Applications
 • Some examples
What is Electrochemistry?

• Interaction of electrons with atoms, ions, or molecules.
 – Oxidation or Reduction
• Exchange of electrons between an atom, ion, or molecule and an electrode.
 – What does this have to do with anything?
 • Rudy Marcus (Nobel 1996)
 • Study electrode + A; electrode + B
 • Predict rxn A + B
Basics of Electrochemistry

- Primary variables:
 - **Current (ampere, \(\text{A} \))**
 - Rate – electrons / second
 - \(1 \text{ A} = 6 \times 10^{18} \text{ electrons} / \text{second} \)
 - **Voltage (volt, \(\text{V} \))**
 - Voltage = Energy
 - \(1 \text{ V} = 1 \text{ joule} / \text{coulomb} \)
 - \(1 \text{ V} = 1 \text{ joule} / 6 \times 10^{18} \text{ electrons} \)
 - \(1 \text{ eV} = 0.16 \times 10^{-18} \text{ J} \)
Basics of Electrochemistry

• Variables and units
 – Charge (coulomb, C)
 • Number of electrons
 • 1 coulomb = 1 ampere for 1 second
 \[= 6 \times 10^{18} \text{ electrons} \]
 • 1 mole of electrons = 6×10^{23} e$^-$
 • 1 mole of e$^-$ = 1 faraday (F) = 96,485 C
 • 1 faraday = 1 A for 96,485 s (28.6 hr!)
Basics of Electrochemistry

• What controls the current?
 – Voltage
 • Energy of the electrons
 – Rate of supply of reactant
 • Reactions happen ONLY at the surface of the electrode! (Michael Faraday)
 • Diffusion
 • Stirring
 • Rotated electrodes
An Electrochemical Experiment

- Current and voltage are measured by and voltage is controlled by a **Potentiostat**
Electrochemical Impedance Spectroscopy (EIS)

- Small perturbation
- Nominally non-destructive
- Many variations on the experiment
 - Sine wave perturbation
 - Many sine waves (Multisine)
 - Small steps
 - Random noise
 - Hardware / Software implementations
- All give the same results
EIS Theory

- If the perturbation is small:
 - Current-voltage curve appears linear
 - Sine wave voltage perturbation gives *sine-wave-ish* current response
EIS Theory

- Sine wave *voltage perturbation*
- *Shifted* sine wave *current response*
- **Two** parameters characterize this response:
 - Time/*phase shift*
 - **Magnitude**: Ratio of voltage to current (E/I)
EIS Theory

- **Magnitude**
 - AC components only
 - voltage/current
 - Unit: ohm (Ω)
 - $1 \, \Omega = 1 \, \text{V} / 1 \, \text{A}$

- **Phase angle** (shift)
 - Degrees
 - Θ or ϕ
EIS Theory

• Magnitude and phase together are impedance (Z)
• Magnitude = |Z|
 – Ohms, Ω
Presenting EIS Data

- “Bode Plot” - shows magnitude and phase
 - Bode Magnitude: log Magnitude vs log frequency
 - Magnitude and frequency both change over MANY decades
 - Frequency: 10^{-5} to 10^{+6} Hz
 - Magnitude: 10^{-5} to 10^{+14} ohm
 - Bode Phase: phase vs log frequency
 - Phase: -180° to $+180^\circ$
 - Frequency: f: Hz (cycles/s), ω: rad/s, $\omega = 2 \pi f$
A Bode Plot

• Phase is sometimes plotted the other way
Polar vs. Cartesian

- Two parameters specify a point in a plane
- Use Polar coordinates: Magnitude, phase
- Use Cartesian coordinates: X, Y
Polar vs. Cartesian

- Polar: Bode plot
- Cartesian: Complex plane plot, Nyquist plot
 - Label axes: "real", "imaginary"; Z', Z''
Nyquist Plot

- Pretty pictures!
- Frequency is not shown on the plot
- Should use same scale on X, Y ($Z_{\text{real}}, Z_{\text{imag}}$)
Which Plot is Right?

• Both!
EIS Experiment

Diagram:
- Waveform Generator
- Potentiostat
- Analyzer
- Computer
- Electrochemical Cell
- Counter Electrode
- Reference Electrode
- Working Electrode

Connections:
- E from Potentiostat to Analyzer
- I from Potentiostat to Computer
- Connections to Electrochemical Cell
Electrochemical Impedance Spectroscopy (EIS)

- Many variations on the experiment
 - Sine wave perturbation
 - Many sine waves (Multisine)
 - Small steps
 - Random noise
 - Hardware / Software implementations
- All give the same results
- System cost: $10K-$35K
Applications of EIS

• Corrosion measurement
 – Understanding the corrosion process
• Coatings evaluation
 – How to tell (this week) if a coating will last 5 years or 10 years
• Fuel Cell “state of health”
 – Batteries, Supercapacitors
• Sensors - “Impedimetric”
 – Milk; Motor oil
How Do **Wizards** Model EIS Data?

- Propose a physical model
 - Fuel Cell
 - Gas flow, porosity of anode, cathode
 - Reaction rates at anode, cathode
 - Diffusion of H⁺ through Nafion membrane
 - Resistance of current collectors
 - Write differential equations for all processes & solve $I(E, f, \ldots)$
 - Linearize and write $Z = E_{AC} / I_{AC}$
How Do We Model EIS Data?

- Borrow from electrical engineers
 - “What circuit would give the same response as my fuel cell?”
 - Equivalent circuit model
 - Resistors, capacitors, inductors
 - Some special elements for echem
 - Diffusion
 » Warburg: W
 » Bounded Warburg: O, T
 » Diffusion with competing rxn
 Gerischer: G
Equivalent Circuit Models

- What do these circuit elements mean?
 - R – resistor (resistance, R, Ω)
 - $|Z|$ is constant, $\Theta = 0^\circ$
 - Physical meaning?
 - R_s: Resistance of conducting electrolyte
 - R_p: “Polarization Resistance” $\propto 1$/corrosion rate
Equivalent Circuit Models

• What do these circuit elements mean?
 – C – Capacitor (C, capacitance, farad)
 • \(| Z | = \frac{1}{\omega C}, \Theta = -90^\circ\)
 • Physical meaning?
 – Cdl: Double layer capacitance
Equivalent Circuit Models

• What do these circuit elements mean?
 – L – Inductor (inductance, L, henry)
 • \(| Z | = \omega L, \Theta = +90^\circ\)
 • Physical meaning?
 – Adsorption – appears @ low frequency
 – Artifact – appears @ high frequency
 » Interactions between wires!
PEM Fuel Cell Model -1
Equivalent Circuit Models

- Constant Phase Element (CPE)
 - $|Z| = \frac{1}{\omega^n Y}$, $\Theta = -90^\circ \times n$ (0 < n < 1)
Equivalent Circuit Models

- Constant Phase Element (CPE)
 - $|Z| = \frac{1}{\omega^n Y}$, $\Theta = -90^\circ \times n$ (0 < n < 1)

- Physical meaning?
 - Rough surface
 - Inhomogeneous surface
 - Distribution of some physical process
 - Distribution of reactivity
PEM Fuel Cell Model -2

[Diagram of PEM Fuel Cell Model]

- R.E.
- Lstray
- HFR
- Ri-cathode
- Yo-cathode
- a-cathode
- Ri-anode
- Yo-anode
- a-anode
- W.E.

[Graph of PEM Fuel Cell]

Zreal (ohm)

- 0.000 ohm
- 10.000 mohm
- 20.000 mohm
- 30.000 mohm

Zimag (ohm)

- -10.000 mohm
- 0.000 ohm
- 10.000 mohm
- 20.000 mohm
- 30.000 mohm

Range:
- 0.000 ohm to 80.000 mohm

Research Solutions and Resources LLC http://www.ConsultRSR.com
PEM Fuel Cell Model -2
Applications of EIS

• Corrosion measurement
 – Understanding the corrosion process

• Coatings evaluation
 – How to tell (this week) if a coating will last 5 years or 10 years

• **Fuel Cell “state of health”**
 – Batteries, Supercapacitors

• Sensors - “Impedimetric”
 – Milk; Motor oil
Another Fuel Cell Study

• PEM Fuel Cell
 – Authors looked at three operating conditions
 • Dry, Normal, Flooded
 • Fit to model below

Fig. 4. Randles cell.

Another Fuel Cell Study

- R_m: membrane, R_p: e^- xfr, R_d: diffusion
- Normal, Flooded, Dry

Fig. 4. Randles cell.

Fig. 12. Evolution of the fuel cell state of health as a function of time.

Applications of EIS

• **Corrosion measurement**
 – **Understanding the corrosion process**

• Coatings evaluation
 – How to tell (this week) if a coating will last 5 years or 10 years

• Fuel Cell “state of health”
 – Batteries, Supercapacitors

• Sensors - “Impedimetric”
 – Milk; Motor oil
Understanding Corrosion

- Titanium in fluoride containing saliva
 - Examined three alloys

Fig. 14. Impedance spectra of: ○, Ti; □, Ti7Al4.5V; and △, Ti5Al2.5Fe in Fusayama-Mayer +0.1% weight F− solution at 200 mV vs. SCE. Dotted line—the fitted spectra.

Fig. 15. The equivalent circuit proposed to fit the impedance data in artificial saliva containing fluoride ions. DE, distributed element accounting for the double layer capacitance; Rct, charge transfer resistance; Lad, Rad, inductance and resistance, respectively associated with the presence of the adsorbed species on the electrode surface; Cox, Rox, capacitance and resistance of the oxide film.

Ti in saliva

- Rct (Charge transfer resistance) not affected

Table 3

<table>
<thead>
<tr>
<th>Element</th>
<th>Ti</th>
<th>Ti7Al4.5V</th>
<th>Ti5Al2.5Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{el} 10^5 T_{dl}/\Omega^{-1} s^n \text{ cm}^2$</td>
<td>4.94 ± 0.19</td>
<td>6.22 ± 0.25</td>
<td>3.82 ± 0.19</td>
</tr>
<tr>
<td>n</td>
<td>0.93 ± 0.008</td>
<td>0.89 ± 0.008</td>
<td>0.92 ± 0.008</td>
</tr>
<tr>
<td>$R_{ct}/\Omega \text{ cm}^2$</td>
<td>62 ± 0.4</td>
<td>56.4 ± 0.3</td>
<td>59.9 ± 0.5</td>
</tr>
<tr>
<td>$L_{ad}/\text{H cm}^2$</td>
<td>0.82 ± 0.04</td>
<td>0.77 ± 0.03</td>
<td>0.98 ± 0.05</td>
</tr>
<tr>
<td>$R_{ad}/\Omega \text{ cm}^2$</td>
<td>20.6 ± 0.65</td>
<td>21.6 ± 0.6</td>
<td>26.4 ± 0.77</td>
</tr>
<tr>
<td>$C_{ox}/\text{mF cm}^2$</td>
<td>14.5 ± 0.13</td>
<td>13.8 ± 0.09</td>
<td>10.8 ± 0.09</td>
</tr>
<tr>
<td>$R_{ox}/\text{k\Omega cm}^2$</td>
<td>2.79 ± 1.2</td>
<td>1.22 ± 0.13</td>
<td>10.4 ± 9.8</td>
</tr>
<tr>
<td>$C_{dl}/\mu\text{F cm}^2$</td>
<td>30.1</td>
<td>27.2</td>
<td>21.2</td>
</tr>
</tbody>
</table>

Ti in saliva

- Rox (oxide film resistance) varies considerably

Table 3
The parameters of the equivalent circuit from Fig. 15 after fitting the impedance spectra in artificial saliva containing fluoride ions

<table>
<thead>
<tr>
<th>Element</th>
<th>Ti</th>
<th>Ti7Al4.5V</th>
<th>Ti5Al2.5Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{el} \times 10^5$ $T_{dl}/\Omega^{-1} s^n \text{cm}^2$</td>
<td>4.94 ± 0.19</td>
<td>6.22 ± 0.25</td>
<td>3.82 ± 0.19</td>
</tr>
<tr>
<td>n</td>
<td>0.93 ± 0.006</td>
<td>0.89 ± 0.006</td>
<td>0.92 ± 0.008</td>
</tr>
<tr>
<td>$R_{ct}/\Omega \text{cm}^2$</td>
<td>62 ± 0.4</td>
<td>56.4 ± 0.3</td>
<td>59.9 ± 0.5</td>
</tr>
<tr>
<td>$L_{ad}/\text{H \text{cm}^2}$</td>
<td>0.82 ± 0.04</td>
<td>0.77 ± 0.03</td>
<td>0.98 ± 0.05</td>
</tr>
<tr>
<td>$R_{ad}/\Omega \text{cm}^2$</td>
<td>20.6 ± 0.65</td>
<td>21.6 ± 0.6</td>
<td>26.4 ± 0.77</td>
</tr>
<tr>
<td>$C_{ox}/\mu\text{F \text{cm}^2}$</td>
<td>14.5 ± 0.13</td>
<td>13.8 ± 0.09</td>
<td>10.8 ± 0.09</td>
</tr>
<tr>
<td>$R_{ox}/\text{k\Omega \text{cm}^2}$</td>
<td>2.79 ± 1.2</td>
<td>1.22 ± 0.13</td>
<td>10.4 ± 9.8</td>
</tr>
<tr>
<td>$C_{w}/\mu\text{F \text{cm}^2}$</td>
<td>30.1</td>
<td>27.2</td>
<td>21.2</td>
</tr>
</tbody>
</table>

Applications of EIS

• Corrosion measurement
 – Understanding the corrosion process

• **Coatings evaluation**
 – How to tell (this week) if a coating will last 5 years or 10 years

• Fuel Cell “state of health”
 – Batteries, Supercapacitors

• Sensors - “Impedimetric”
 – Milk; Motor oil
EIS Applied to Coatings

• 3 Articles in JCT, available through:
 – www.ConsultRSR.com
 – www.gamry.com
Applications of EIS

• Corrosion measurement
 – Understanding the corrosion process
• Coatings evaluation
 – How to tell (this week) if a coating will last 5 years or 10 years
• Fuel Cell “state of health”
 – Batteries, Supercapacitors
• Sensors - “Impedimetric”
 – Milk; Motor oil
Sensing Motor Oil Quality

• Motor oil IS conducting (a little)
 – **IF** electrodes are closely spaced!
• Oil degrades by oxidation over time
 – 80 hr * 60 mi/hr = 4800 miles!
 – Trucks, 40 quarts, > $150/oil change

Electrochimica acta, 53 (2008) 7375-7385
DOI: 10.1016/j.elacta.2007.12.014
Sensing Motor Oil Quality

Electrochimica acta, 53 (2008) 7375-7385
DOI: 10.1016/j.elacta.2007.12.014

Research Solutions and Resources LLC
http://www.ConsultRSR.com
To Learn More

• www.gamry.com - good introduction
• www.consultrsr.com
• Books
 – Orazem, Tribollet, “Electrochemical Impedance Spectroscopy”
 – Barsoukov, Macdonald, “Impedance Spectroscopy” 2nd ed.
Thanks for your Attention!
And I hope I didn't scare you too much!